

Joseph Lazio
US VLBA Navigation and Reference Frame Workshop
Lorene Samoska, Melissa Soriano, Jose Velazco,
Christopher Jacobs

Motivation I

Motivation I

Motivation II

Wide-Band VLBA Receiver System for Astrometry and Navigation

Frequency Bands Allocated by the International Telecommunication Union (ITU)

Dand	> 2 million kı	m from Earth	< 2 million km from Earth			
Band	Uplink	Downlink	Uplink	Downlink		
S	2110–2120*	2290–2300	2025–2110	2200–2290		
X	7145–7190	8400-8450	7190–7235	8450-8500		
K	-	-	-	25500–27000		
Ka	34200–34700	31800–32300	-	-		

DSN Telecommunications Link Design Handbook, 810-005, 201 "Frequency and Channel Assignments"

* Deep Space S-band not available at Madrid Deep Space Communications Complex

VLBA vs. Spacecraft TT&C

Telecommunications, Tracking, & Command

Table 3: Receiver Frequency Ranges & Performance as of July 2015

			40 (J. July 201	•					
[1]	l	[2]	[3]	[4]	[5]	[6]		[7]		
Receive	er	Nominal	Typical	Center	Typical	Base	eline	Ir	mage	
Band		Frequency	Zenith	Frequency	Peak	Sensiti	ivity	Sensi	tivity	
Designa	ation	Range	SEFD	for SEFD	Gain	ΔS ²⁰⁴⁸	3,2m	ΔI_m^{20}	48,8h	
(*)		[GHz]	[Jy]	[GHz]	[K Jy ⁻¹]	[n	nJy]	[μJy bea	am ⁻¹]	
90 cm	(a)	0.312 - 0.342	2742	0.326	0.077	(h)	39	(j)	266	
50 cm	(a,b)	0.596 - 0.626	2744	0.611	0.078	(h)	111	(k)	681	
21 cm	(c)	1.35 - 1.75	289	1.438	0.110		1.0		10	
18 cm	(c)	1.35 - 1.75	314	1.658	0.112		1.1		11	
13 cm		2.2 - 2.4	347	2.269	0.087		1.2		12	
13 cm	(d)	2.2 - 2.4	359	2.269	0.085		1.3		12	
6 cm	(e)	3.9 - 7.9	210	4.993	0.119		0.7		6	
7 ghz	(e)	3.9 - 7.9	278	6.660	0.103		1.0		9	
4 cm		8.8 - 0.8	327	8.419	0.118		1.2		11	
4 cm	(d)	8.8 - 0.8	439	8.419	0.105		1.6		15	
2 cm		12.0 - 15.4	543	15.363	0.111		1.9		18	
1 cm	(f)	21.7 - 24.1	640	22.236	0.110		2.3		22	
124 ghz	(f)	21.7 - 24.1	534	23.801	0.118		1.9		18	J
7 mm		41.0 - 45.0	1181	43.124	0.090	(h)	6		40	
3 mm	(g)	80.0 - 90.0	4236	86.2	0.033	(i)	30	(1)	254	

- No coverage of Kor Ka-band TT&C allocations
- ~ 35% T_{sys} degradation at X band w/ dichroic

VLBA Observational Status Summary 2019A

Objective

- International Celestial Reference Frame is now multiwavelength
- VLBA is key asset in constructing current and future instances of ICRF,
- ... but no coverage at bands relevant to spacecraft tracking
- Beginning technology development toward prototype wideband receiver system for reference frame development and maintenance, with eye toward testing on VLBA

Technology Development for the North America Array

Background I (FY16--FY18)

North America Array Receiver Package

System Requirements

- Continuous coverage for 8-48 GHz
- T_{rx} = 30--40 K
 T_{sys} of 34 K @ 10 GHz and 45
 K @ 30 GHz required
- Dual polarization

Assumption

Baseline antenna is offset Gregorian (e.g., MeerKAT antenna) scaled to 18 m diameter with f/D = 0.55

Design considerations

- Compact cryogenic package
- Easy to manufacture
- Easy to service
- o Low Cost

Technology Development for the North America Array

Technology Development for the North America Array

Background III

8-48 GHz ultra wide band downconverter for the NAA

Technology Development for the North America Array

Background IV

Technology Development for the North America Array

Background V

Requirements

North America Array/nextgeneration Very Large Array

- Continuous coverage for 8-48 GHz
 - Science-driven requirement
- Baseline antenna is 18 m diameter offset Gregorian with f/D = 0.55

Very Long Baseline Array

- Coverage of 8 GHz to 35 GHz
 - Astrometry and navigation-driven requirement
 - Radar?
- Antenna is 25 m diameter Cassegrain

VLBA Receiver System

Three Technology Development Components

1. Feed

2. LNAs

3. Receiver System

Wideband Feed Development

Objectives and Challenges

- Design feed for 8-35 GHz
- Dual polarization
- Compatible with VLBA 25 m
 Cassegrain optics
- Quad-ridge flared horn (QRFH)?
 Based on work of A. Akgiray & S.
 Weinreb

Gain ~20 dB $\overline{\eta_{apt}}$ ~ 65% X_{pol} 10 -20 dB IRL > -10 dB

Akgiray, PhD Thesis, Caltech 2013 design intended for DSS-14 with similar optics and f/D

LNA Development

Goal: Receiver Noise Comparable to JVLA

- HEMT LNA-based receivers tuned for narrow individual bands
- Average receiver noise temperatures of 7 K--8 K below 18 GHz, 10 K--20 K from 18 GHz--35 GHz. For new Wideband LNA, aim is no more than 20% higher.
- Goal is ~8 K--24 K from 8 GHz--35 GHz, in one band (not individual receivers)

Cryogenic Wideband LNA Development

Objectives and Challenges

- Challenging to achieve low noise LNAs over 8 GHz--35 GHz
- JPL has LNA chips from multiple projects, some may be suitable for 8-35 GHz and will be tested
- JPL is world leading in cryogenic MMIC design from 40 GHz--300 GHz

Measured results from 8 GHz--50 GHz LNA from JPL (Bowen 2018) → prove concept is possible

- Imaging: ADOR navigations benefit from source images in order to select most compact components
- "Structure" effects << △DOR 1 nanoradian level
- DSN has only single baselines which prevents source imaging
- At present, no instrument in the world that can image at VLBI resolutions in Ka band

referencing at X- and Ka bands with the VLBA of spacecraft in planetary orbit relative to quasar can track planet's orbit with spacecraft without ΔDOR tones and without disrupting telemetry

Schedule: Year 1

Milestones	Planned Date		
Evaluate LNAs 8-35 GHz	Oct -Jan 2019		
Design new optimized LNAs & fab	Feb - June 2019		
Design Receiver system compatible VLBA	Mar-Jun 2019		
Design Wideband Feed compatible - VLBA	July 2019		
Fabricate Feed	Aug 2019		
Build Receiver	Aug 2019		
Test new LNAs	Aug 2019		
Test full receiver	Sep 2019		

Summary

